zhub.link is one of the many independent Mastodon servers you can use to participate in the fediverse.

Administered by:

Server stats:

32
active users

Habr

Десять уроков развития аппаратных ускорителей для ИИ: как эволюция TPU привела к созданию TPUv4i

В последние годы стало очевидно, что классические центральные процессоры (CPU) и видеокарты (GPU) уже не всегда поспевают за непрерывным ростом и усложнением нейронных сетей. Вместо бесконечного наращивания «универсального» железа, компании начали разрабатывать и внедрять в своих дата-центрах Domain-Specific Architecture (DSA) — аппаратные ускорители, заточенные под конкретные задачи. Google TPU (Tensor Processing Unit) — одно из первых крупных решений такого рода. Начиная с 2015 года (поколение TPUv1), Google успела вывести на рынок несколько поколений TPU для внутренних нужд: TPUv1 и TPUv2/v3, а в 2020 году — новое решение TPUv4i . Если первые версии TPU были ориентированы исключительно на ускорение инференса (выполнение уже обученных моделей), то TPUv2 и TPUv3 смогли взять на себя ещё и тренировку крупных нейросетей. Но в дальнейшем выяснилось, что для оптимальной работы дата-центров в масштабах Google рациональнее разделить решения для тренировки и инференса. TPUv4i — это результат учёта многих уроков и ограничений, проявившихся в предыдущих чипах. В этом материале разберём, какие «десять уроков» сформировали подход Google к созданию TPUv4i , что это за архитектура и какие проблемы дата-центров она решает.

habr.com/ru/articles/892102/

ХабрДесять уроков развития аппаратных ускорителей для ИИ: как эволюция TPU привела к созданию TPUv4iВ последние годы стало очевидно, что классические центральные процессоры (CPU) и видеокарты (GPU) уже не всегда поспевают за непрерывным ростом и усложнением нейронных сетей. Вместо бесконечного...